Nyquist Theorem - significado y definición. Qué es Nyquist Theorem
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Nyquist Theorem - definición

THEOREM
Nyquist theorem; Shannon sampling theorem; Nyquist sampling theorem; Nyquist's theorem; Shannon-Nyquist sampling theorem; Nyquist-Shannon Sampling Theorem; Nyqvist-Shannon sampling theorem; Sampling theorem; Nyquist Sampling Theorem; Nyquist-Shannon sampling theorem; Nyquist–Shannon theorem; Nyquist–Shannon Theorem; Nyquist Theorem; Shannon-Nyquist theorem; Nyquist sampling; Nyquist's law; Nyquist law; Coherent sampling; Nyqvist limit; Raabe condition; Nyquist-Shannon Theorem; Nyquist-Shannon theorem; Nyquist noise theorem; Shannon–Nyquist theorem; Kotelnikov-Shannon theorem; Kotelnikov–Shannon theorem; Nyquist-Shannon; Kotelnikov theorem; Nyquist's sampling theorem; Sampling Theorem; Nyquist Shannon theorem; Nyquist–Shannon–Kotelnikov sampling theorem; Whittaker–Shannon–Kotelnikov sampling theorem; Whittaker–Nyquist–Kotelnikov–Shannon sampling theorem; Nyquist-Shannon-Kotelnikov sampling theorem; Whittaker-Shannon-Kotelnikov sampling theorem; Whittaker-Nyquist-Kotelnikov-Shannon sampling theorem; Cardinal theorem of interpolation; WKS sampling theorem; Whittaker–Kotelnikow–Shannon sampling theorem; Whittaker-Kotelnikow-Shannon sampling theorem; Nyquist–Shannon–Kotelnikov; Whittaker–Shannon–Kotelnikov; Whittaker–Nyquist–Kotelnikov–Shannon; Nyquist-Shannon-Kotelnikov; Whittaker-Shannon-Kotelnikov; Whittaker-Nyquist-Kotelnikov-Shannon; Whittaker–Shannon sampling theorem; Whittaker–Nyquist–Shannon sampling theorem; Whittaker-Nyquist-Shannon sampling theorem; Whittaker-Shannon sampling theorem
  • the sampled sequences are identical}}, even though the original continuous pre-sampled functions are not. If these were audio signals, <math>x(t)</math> and <math>x_A(t)</math> might not sound the same. But their samples (taken at rate ''f''<sub>s</sub>) are identical and would lead to identical reproduced sounds; thus ''x''<sub>A</sub>(''t'') is an alias of ''x''(''t'') at this sample rate.
  • Example of magnitude of the Fourier transform of a bandlimited function
  • The samples of two sine waves can be identical when at least one of them is at a frequency above half the sample rate.
  • A family of sinusoids at the critical frequency, all having the same sample sequences of alternating +1 and –1. That is, they all are aliases of each other, even though their frequency is not above half the sample rate.
  • Properly sampled image
  • Subsampled image showing a [[Moiré pattern]]
  • The figure on the left shows a function (in gray/black) being sampled and reconstructed (in gold) at steadily increasing sample-densities, while the figure on the right shows the frequency spectrum of the gray/black function, which does not change. The highest frequency in the spectrum is ½ the width of the entire spectrum. The width of the steadily-increasing pink shading is equal to the sample-rate. When it encompasses the entire frequency spectrum it is twice as large as the highest frequency, and that is when the reconstructed waveform matches the sampled one.
  • Spectrum, ''X<sub>s</sub>''(''f''), of a properly sampled bandlimited signal (blue) and the adjacent DTFT images (green) that do not overlap. A ''brick-wall'' low-pass filter, ''H''(''f''), removes the images, leaves the original spectrum, ''X''(''f''), and recovers the original signal from its samples.
  • x}}.

Nyquist Theorem         
<communications> A theorem stating that when an analogue waveform is digitised, only the frequencies in the waveform below half the sampling frequency will be recorded. In order to reconstruct (interpolate) a signal from a sequence of samples, sufficient samples must be recorded to capture the peaks and troughs of the original waveform. If a waveform is sampled at less than twice its frequency the reconstructed waveform will effectively contribute only noise. This phenomenon is called "aliasing" (the high frequencies are "under an alias"). This is why the best digital audio is sampled at 44,000 Hz - twice the average upper limit of human hearing. The Nyquist Theorem is not specific to digitised signals (represented by discrete amplitude levels) but applies to any sampled signal (represented by discrete time values), not just sound. {Nyquist (http://geocities.com/bioelectrochemistry/nyquist.htm)} (the man, somewhat inaccurate). (2003-10-21)
Nyquist–Shannon sampling theorem         
The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth.
Nyquist frequency         
  • The black dots are aliases of each other. The solid red line is an <u>example</u> of amplitude varying with frequency. The dashed red lines are the corresponding paths of the aliases.
IN SIGNAL PROCESSING, THE FREQUENCY WHOSE CYCLE-LENGTH IS TWICE THE INTERVAL BETWEEN SAMPLES
Nyquist Frequency; Folding frequency; Nyquist limit
<DSP> The highest frequency that can be represented in a digital signal of a specified sampling frequency. It is equal to one-half of the sampling rate. See Nyquist Theorem. (2001-06-06)

Wikipedia

Nyquist–Shannon sampling theorem

The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth.

Strictly speaking, the theorem only applies to a class of mathematical functions having a Fourier transform that is zero outside of a finite region of frequencies. Intuitively we expect that when one reduces a continuous function to a discrete sequence and interpolates back to a continuous function, the fidelity of the result depends on the density (or sample rate) of the original samples. The sampling theorem introduces the concept of a sample rate that is sufficient for perfect fidelity for the class of functions that are band-limited to a given bandwidth, such that no actual information is lost in the sampling process. It expresses the sufficient sample rate in terms of the bandwidth for the class of functions. The theorem also leads to a formula for perfectly reconstructing the original continuous-time function from the samples.

Perfect reconstruction may still be possible when the sample-rate criterion is not satisfied, provided other constraints on the signal are known (see § Sampling of non-baseband signals below and compressed sensing). In some cases (when the sample-rate criterion is not satisfied), utilizing additional constraints allows for approximate reconstructions. The fidelity of these reconstructions can be verified and quantified utilizing Bochner's theorem.

The name Nyquist–Shannon sampling theorem honours Harry Nyquist and Claude Shannon, but the theorem was also previously discovered by E. T. Whittaker (published in 1915), and Shannon cited Whittaker's paper in his work. The theorem is thus also known by the names Whittaker–Shannon sampling theorem, Whittaker–Shannon, and Whittaker–Nyquist–Shannon, and may also be referred to as the cardinal theorem of interpolation.